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Abstract 

Most of the work to date on automated control-knowledge acquisition has been aimed at improving the 
efficiency of planning; this work has been termed "speed-up learning". The work presented here focuses 
on the automated acquisition of control knowledge to guide a planner towards belter solutions, i.e. to 
improve the quality of plans produced by the planner, as its problem solving experience increases. To date 
no work has focused on automatically acquiring knowledge to improve plan quality in planning systems. 
We present a taxonomy of plan quality metrics and a first prototype that partially automates the task of 
acquiring quality-enhancing control knowledge for the PRODIGY nonlinear planner. We arc working on 
testing the effect of such control knowledge in plan quality, and developing methods to leam such control 
knowledge. Two complex domains, namely a transportation logistics domain, and a machining process 
planning domain, are being used to evaluate these ideas. 
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The focus of this work is on the automated acquisition of search control knowledge for planning systems. *' 
Most of the work to date on automated control-knowledge acquisition has been aimed to improve the 
efficiency of planning; this work has been termed speed-up learning.   Our focus is on the acquisition 
of control knowledge to guide the planner towards better solutions, i.e.  to improve the quality of plans , 
produced by the planner. 

There are many variations on the notion of the quality of a plan in the context of classical planning 
systems [Langley and Drummond, 19901, such as; 

• the length of the solution path or the total number of actions 

• the execution time of the plan 

• the energy, or other resources, required for the plan execution 

• the robustness of the plan, or its ability to respond well under changing or uncertain conditions. 

Human experts gather knowledge for producing better plans through experience. Here "better" is 
defined in a context-sensitive manner as a combination of plan-quality factors such as those listed above. 
It is precisely this experiential knowledge that we seek to capture from planning experience. We propose 
here to focus our attention primarily on acquiring control knowledge to guide the planner's search towards 
better solutions during planning, rather than post-facto plan modification. The framework for this work is i # 
the PRODIGY architecture. 

The rest of this section gives an example of plan quality in a particular domain. Section 2 proposes 
a taxonomy of plan quality metrics. Section 3 explores the relationship between plan quality and goal 
interactions. Section 4 gives some background on PRODIGY, the example domains used in this work, and 
how PRODIGY'S search decisions alfect plan quality. Section 5 describes an implemented prototype for 
semi-automated acquisition of control rules to improve plan quality in PRODIGY. Section 6 brielly presents * 
work in progress for learning quality-enhancing control rules. Section 7 analyzes related work, and Seclion 8 
concludes with a summary of the expected contributions of this work '. 

1.1    An Example: Plan Quality in a Process Planning Domain 

In the process planning phase of production manufacturing plan quality is crucial in order to minimize 
both resource consumption and execution time. The goal of process planning is to produce plans for 
machining parts given their specifications. Such planning requires taking into account bolh technological 
and economical considerations (Descotte and Latombe, 1985, Doyle, 19691, for instance: 

• It may be advantageous to execute several cuts on the same machine with the same fixing to reduce • 
the time spent setting up the work on the machines. 

• If a hole //i opens into another hole Hz, then one is recommended machining Hj before II\ in order 
to avoid the risk of damaging the drill. 

• • • • • • • • •• 
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Drill-Bit 

Table 

Figure 1: An Example of Set-Up in the Machining Domain (from (Joseph, 19921).  In this example the 
holding device is a vise, the machine a drilling machine, and the tool a drill-bit. 

Most of these considerations are not pure constraints but only preferences when compromises are 
necessary. They often represent both the experience and the know-how of engineers, so they may differ 
from one company to the other. 

Let us look at a concrete example of the difference in quality of plans in this domain, in particular in 
its implementation as one of PRODIGY'S domains [Gil, 19911. The domain concentrates on the machining, 
joining, and finishing steps of production manufacturing. The goal is to produce one or more parts according 
to certain specifications. An example of a request would be for a rectangular block of 5"x2"xl" made of 
aluminum and with a centered hole of diameter 1/32" running through the length of the pan. In order to 
perform an operation on a part, the part has to be secured to the machine table with a holding device, and in 
many cases the part has to be clean and without burrs from preceding operations. The appropriate tool has to 
be selected and installed in the machine as well. As an example, Figure 1 shows a machine set-up to drill a 
hole in a part. Figure 2 sketches graphically the steps to produce a reamed hole. Before performing each of 
these steps, the appropriate tool has to be set in the machine spindle, namely a spot-drill, a high-helix-drill, 
and a reamer. Then some holding device (a vise in the example) has to be put on the machine, and the pan 
has to be held by the holding device. 

•v 
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Figure 2: The Steps to Make a Reamed Hv 'c: first a spot hole is drilled on the part, then the hole itself is 
made, and finally the hole is reamed. For each of these the operations the appropriate tool (respectively a 
spot drill, some appropriate drill bit, or a reamer) has to be installed in the drilling machine. 

Suppose the planner has to build a plan to have a part with two reamed holes on one of its sides. If 
the planner works on making each hole separately, it will obtain a solution, sketched in Figure 3(a) (the 
operators to hold the part are omitted). This solution is not the shortest one (and in this domain a shorter 
solution may mean a faster and cheaper way to produce a large number of parts). Some steps may be 
eliminated by i^ordering the operations. Both holes, and spot holes for that matter, have to be in the same 
side and may be made with the same tools. Therefore once we have set the appropriate tool in the drill 

• 



spindle and held the part on the machine table, the operations corresponding to both holes can be perlbrmed 
consecutively. Figure 3(b) shows a better solution to the problem. In this example the planner obtains the 
better solution by interleaving the problem goals. In PRODIGY this decision may be encoded in the form ot 
a search control rule. 

*) 

holel < 

hole2 < 

put tool to drill a spot hole 
clean the part 
drill spot hole for holel 
change tool to make hole 
drill holel 
change tool to ream 
clean the part 
ream holel 

change tool to drill a spot hole 
drill spot hole for hole2 
change tool to make hole 
drill hole2 
change tool to ream 
clean the part 
ream hole2 

(a) 

put tool to drill a spot hole 
clean the part 
drill spot hole for holel 
drill spot hole for hole2 
change tool to make hole 
drill holel 
drill hole2 
change tool to ream 
clean the part 
ream hole I 
clean the part 
ream hole2 

holel 
and 

hole2 

(b) 

Figure 3: Two Plans of Different Quality to Make Two Reamed Holes on a Part. Some steps in solution 
(a) may be eliminated by reordering the operations, since once the corresponding tool is sei, the operation 
may be performed for both holes consecutively. Solution (b) captures such improvement by interleaving 
the operations on holel and hole2. 

2    A Taxonomy of Quality Metrics 

In this section we propose a taxonomy of quality metrics for planning systems. These metrics can be 
classified in three large groups. The planner solutions can be compared in terms of their execution cost, 
their robustness or reliability under unexpected circumstances, and the satisfaction of the client with the 
solution itself (for example the accuracy of the result, or the comfort it provides to the user). Figure 4 
presents this taxonomy, and the next subsections explore it in detail. The problem of finding good quality 
plans is different from that of reducing the effort required to generate plans. If only limited resources (time 
or space) arc available for planning, the planner may have to give up trying to lind a good solution and 
resign to any solution within the given resource bound. Section 2.6 discusses metrics of problem solving 
efficiency and some previous work on improving it in PRODIGY. 

2.1    Minimizing Execution Cost 

The quality of a plan is strongly related to the cost of executing it. Some of the factors that affect a plan's 
execution cost can be computed by summing over all the steps or operators in the . !an, that is ('(,,,„/ = LV, 
where Ctotal is the total cost of executing the plan and r, is the cost for each operator, r, can be the operator 
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2We make a distinction between the process planning problem and the scheduling problem. The former can be defined as 
selecting a sequence of operations whose execution results in the achievement of a goal, for example the completion of an order in 
a job shop. The latter focuses on the assignment of start and end times and resources to each of those operations. 

execution time, the cost of the resources used by the step, or 1 if the measure is simply the length of the • 
plan or total number of actions. This section analyzes factors that influence a plan's execution cost. 

Execution time: a straightforward measure of execution time is the number of operations, or length, T^ 
of the plan. However different actions frequently take different times to execute and therefore considering 
the execution time for each operator is more significant than just the length of the plan. The plan topology 
affects execution time if several actions may be executed in parallel. 9 

Material resources: a resource is something needed to perform a plan step. In a factory scheduling 
domain, or the process planning domain described above, resources include personnel, material, tools and 
machines. Each action includes which resources it requires and the characteristics that the resource must 
have. Resources can be classified in several categories: 

• Time. 

• Energy. 

• Consumable resources are those for which an initial stockpile is available which can only be depleted 
by actions in the plan [Currie and Täte, 19911, for example materials. Particular instances of these 
resources cannot be reused by several actions. Consumable resources can be further classified as 
renewable and non-renewable. The agent has some way of obtaining more renewable resources if it 
runs out of them (for example, it can acquire more metal stock). However once it runs out of some 
non-renewable resource but still needs it, the agent cannot make progress in the plan execution. 

• Non-consumable resources are those that are rendered busy for a period of time, and then released | 9 
and made available to other actions. This includes the use of machines and tools. The consumption 
of resources is related but different from an object wearing out. For example, machines wear out, but 
are usually considered as non-consumable resources. The wearing is related to the cost of an operator 
making use of the resource, but not directly so. 

The use of resources is closely related to the cost of executing a plan.  Good plans try to make the * 
best use of the resources available. There are many considerations about resources and resource use that 
influence the quality of a plan: 

• Maximize the fraction of time in which a resource is actually used, and inter-operation transfer times. 
The planner should try to reduce the amount of time a resource remains idle but locked by some | 
action.  An example of this is reducing the time an airplane remains sitting in the airport waiting 
for its load to arrive. This idle time may force the plainer to use a different resource for another 
actions in the meantime, or else to create a plan with a longer execution time. As another example, 
in the Hubble space telescope (HST) domain, a good schedule will try to maximize the fraction of 
time spent actually recording data on any instrument of the telescope, as opposed to (for example) - 
realigning the telescope or switching instruments [Muscettola and Smith, 19901. Scheduling systems 
typically address these considerations in order to generate good schedules [Fox and Smith, 198412. 

• Minimize the number of resource requests that will be necessary during plan execution: human 
experts try to reduce resource reservations, as a resource request may create waiting times until the 
resource becomes available, if it is being used by a different agent. Once one obtains a resource, it I 
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'However PRODIGY in particular assumes that there is not uncertainty on the operators or the world model.  For a thorough 
investigation of inadequate operators and learning to improve their fidelity to external actions, see IGil, I992i. 

is better to use it as much as possible belorc releasing it. In the process planning domain example ^ 
presented in Section 1.1, the belter solution takes advantage of the same set-up to perform several 
operations, instead of setting up the machine, tool and part once for each operation to perform. This j^) 
not only reduces the length of the plan but also the number of resource requests. 

• Resource sharing may reduce the length and cost a plan, for example when the same truck is used 
to move two different packages to the same destination. Sometimes however it is better not to use a I 
resource that is being used by other operators. This is a way to avoid resource conflicts with the plans 
for other agents, and therefore the resulting plans are more amenable to parallclization. We made use 
of this criterium in previous work on multiagent planning [Perez, 19911: resource preferences were 
encoded in control rules, mostly domain independent, and then plan topology and resource conflicts 
were analyzed in order to build parallel plans.                                                                                                         I 

The choice of resources not only conditions the plan execution cost, but also its robustness. Many factors 
related to the availability of alternative resources, such as machine downtime, machine substitutability, or 
alternative production processes, can affect the reliability of a plan and the availability of alternative actions 
when using the chosen resource fails. 

Agent skill requirements: they refer to the extent to which an agent can perform an action. Some * 
examples are strength, speed, intellect, and how good it is at a particular skill. Plans with less agent skill 
requirements are typically less expensive. 

Plan complexity: plan complexity affects both the execution cost and the robustness of a plan, and 
there usually exists a trade-off between these two measures of plan quality. The complexity of a plan can 
be seen at two levels: I # 

• operator complexity: the choice of a particular operator is influenced by how likely it is to fail or 
have unpredictable results, and also by it;, execution cost, both in lime and resources. 

• complexity of the plan structure: plan length is a straightforward measure of the quality of a plan. 
However in some cases it is interesting to consider the plan topology as well.  The dependencies | 
among operators and their concurrency on the use of resources influence execution time, as several 
actions may be performed in parallel if they are independent [Perez, 1991 [. They also influence the 
plan robustness when several actions contend for the same resource. 

2.2   Maximizing Plan Robustness I 

By robustness of a plan we mean its ability to respond well under changing or uncertain conditions. A 
plan's execution may fail because of unexpected environmental changes or events, of actions not having 
their intended effects (the resources are not reliable, or the operators outcome is uncertain 3), or even of 
inadequacies of the planner itself. When a failure occurs, execution of a plan may go awry and produce 
outcomes considerably different from the desired goal.   Therefore the quality of a plan depends on its I 
reliability and its potential for recovery after a failure. Recent work with focus on execution-failure 
recovery uses different methods for adapting a plan upon failure so execution can continue I Howe and 
Cohen, 1991 [. Another approach is to improve the planner's knowledge to guide its search towards more 
robust plans. Note that there is usually a trade-off between cost and robustness [Fcldman and Sproull, 
19771. I 

Three aspects determine a plan's robustness: 

'" ' 
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"Note however that at present PRODIGY'S solution to a problem achieves all the goals in the problem, or else renders the problem 
unsolvable. Therefore in that sense all the plans have the same value, with respect to the degree of goal satisfaction. 

•) 

• probability ol failure ' 

• extent of the failure J^1 

• possibility of failure recovery 

To reduce the probability of an execution failure the planner may reuse plans that proved successful I 
in past similar situations and were stonM then. Plans that are complex, both at the operator level and at 
the plan topology, are more prone to c tion failures, as discussed above. Some operators may be more 
likely to fail or act unpredictably tha rs. Complex plans with many dependencies among operators 
and resource sharing may suffer of resc^. - contention and therefore fail at execution time. 

Another factor for plan robustness is whether the consequences of a failure during execution are t 

localized. If all the plan actions are interacting and one of them fails, the plan may fail without making 
any progress towards the goal. However if two parts of a plan are non-interacting, a failure in one part 
will not affect the other. (We refer to these types of failures as containable failures.) In particular linearly 
decomposable plans are preferred, i.e. those that can be decomposed in independent subplans that achieve 
different subgoals. Therefore the localization of the parts of the plan that can cause execution failures 
increases the possibility of partial success of the plan. By analyzing those parts the planner can incorporate 
redundant steps that increase the probability of success of the whole plan. 

Failures are often unpredictable and in spite of reducing their chances of occurring, they may eventually 
happen. Plan robustness includes the possibility of recovery after a failure. This possibility increases if the 
use of non-renewable resources in the plan is minimal. If the agent runs out of a resource of this type, no 
recovery that requires that same resource is possible. Recovery is facilitated when other alternatives to the I • 
faulty parts of the plan are available. These alternatives may be built in the plan by planning in advance 
for contingencies. The alternatives may also be stored in a library of recovery methods [Howe and Cohen, 
19911. They can also be left unexplored. In this case they can be used upon failure at running time for 
replanning and recovery. 

I 
2.3 Client Satisfaction 

There are some other factors of plan quality that can hardly be considered in the previous categories and in 
some cases they are hard to quantify. For example, the human user may prefer a plan that takes him from 
one city to another in first class instead of second class. The process planning domain exemplifies how 
the degree of accuracy required in a part may inlluence the choice of machine or tool to perform a given • 
operation, if the result has to satisfy a fine-grain tolerance. 

In scheduling systems that try to lind the optimal schedule, the value of the resulting state is an applicable 
criterium to measure plan quality. The quality of a solution can be measured by the number of the goals 
achieved by the solution or the value of such goals. For example in the case of scheduling the operations of 
the Hubble Space Telescope, the quality of the solution obtained depends on the number of proposals that » 
the HST can accommodate I Muscettola and Smith, 19901 and how the proposals accommodated relate to 
the program and observation priorities, which are given as part of the problem to solve. 4 

2.4 Trade-Offs Among Quality Metrics 

When deciding which plan is better one can easily run into trade-offs. This can be illustrated with an 
example from the process planning domain.  In this domain several machines can be used to reduce the 
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size of a part. The choice of a particular type of machine may depend on the degree of accuracy desired, 
the economy of the plan, or the time required for execution. The last two factors in turn might only be .^ 
relevant depending on the number of parts on which the same operation has to be performed (i.e. how many 
times the same plan will be executed). Grinding a part gives better linishes and holds closer tolerances than 
other machines, but it may be more expensive. The shaping and planing operations, in order to reduce a 
part's size, are slower than milling the part, but the tools they use are less expensive and easier to sharpen. I 
Therefore it may be necessary to consider trade-offs among the different options. Factors such as the skills 
available and required to operate the machine, personal likes and dislikes, and availability may also need to 
be considered. Most of these factors are not as basic as others but in some cases may be decisive. 

Scheduling systems have to face a similar problem when the constraints encoding different quality 
factors conflict [Fox and Smith, 1984).  For example, removing a machine's second shift may decrease f 
costs but may also cause an order to miss its due date. Therefore in these systems one cannot rely only 
on constraint propagation techniques to arrive to acceptable solutions. Rather, they choose to relax some 
constraints and And a solution that best satisfies the remaining constraints. 

2.5 Domain-Dependent Versus Domain-Independent Metrics I 

In some cases the ways to measure the quality of a plan are clearly domain dependent. The goal of the 
scheduler presented in  [Perry, 19901 is to schedule launches and terminal illuminators to maximize the 
depth of fire, or number of shots at incoming threats. Other criteria, such as "minimize the consumption of 
resources," seem obvious and applicable to every domain. However we can lind cases where this is not the 
best thing to do. The distinction between domain-dependent and domain-independent aspects is not always |        # 
clear. We take this example from [Wilkins, 19881; consider the advice "use existing objects." This is a 
fairly domain-independent concept that is used by NOAH, and mentioned by Wilensky as a meta-goal for 
planning. However this idea still involves domain-dependent knowledge. In a house-building domain, it is 
desirable to use the same piece of lumber to support the roof and the shcetrock on the walls. But in other 
domains this may not be a good strategy. On the space shuttle, one may want different functions performed 
by different objects so the plan will be more robust and less vulnerable to the failure of any one object. So 
the "use of existing objects" idea makes assumptions about the domain that need to be stated (perhaps one 
wants to apply this idea only to certain portions of the domain). 

2.6 Measures of Planning Cost 

The quality of a planning algorithm depends both on the quality of the solutions generated and on the effort 
spent searching for them. If only limited computational resources are available to the planner during problem 
solving, the planner may have to trade off solution quality in order to lind a solution at all. The planning cost 
depends on both the time and the space spent during problem solving. Two measures of planning cost have 
been used in the literature on learning and planning (for example I Minton, 1988, Perez and Etzioni, 19921), | 
namely search time and number of nodes in the search tree. Figure 5 summarizes planning cost criteria. 
Planning time can be measured as time spent in pure planning, or amortized when planning and learning 
are interleaved.   Planning space is usually measured as working space (for example, number of nodes 
expanded in search). When planning and learning arc interleaved and the planner stores knowledge that 
will be useful later, a long-term use of space has to be considered. The stored knowledge can take the form 
of search control rules extracted from problem solving traces, or of cases in a case library I Veloso, 1992, 
Kambhampati, 1990, Hammond, 19861.  Recycling past successful experience reduces the search effort 
when solving new similar problems. Note that there is usually a trade-off among the amount of knowledge 
stored, the cost of accessing and reusing it, and the savings on search gained from it [Minton, 19881. 

• • • 
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planning  and learning) search tree)        size) 

Figure 5: A Taxonomy of Metrics of Planning Cost. Most of the machine learning mechanisms designed to 
date to acquire control knowledge for planning systems are aimed at improving the efficiency of planning. 
These techniques are known as speed-up learning. 

2.6.1   Solution Quality Versus Problem Solving Efficiency 

As we have already mentioned, the problem of finding good quality plans is different from that of reducing 
the effort required to generate plans. In many domains finding a plan at all requires a considerable amount 
of search and there has been work on improving the efficiency of a problem solver with machine learning 
techniques [Mitchell et al., 1983, Laird et ai, 1986, Gratch and DeJong, 1992, Korf, 1985, Veloso, 1992, 
Minton, 1988,Knoblock, 1991b, Etzioni, 199Ö! Wecall this i-pmi-«/? learning. However these mechanisms 
have paid none or little attention to the quality of the solutions obtained. Here we brietly present some 
examples of speed-up learning systems in the context of PRODIGY. 

PRODIGY'S explanation-based learning system (EBL) [Minton, 19881 constructs explanations from a 
noblem solving trace and an axiomatized theory describing both the domain and relevant aspects of ihc 

problem solver's architecture. Then the resulting descriptions arc expressed in control rule form, and control 
rules whose utility in search reduction outweighs their application overhead are retained. The system can 
learn from success, failure and goal interaction. These concepts are represented declaratively as target 
concepts. The analysis of goal interactions may lead to better plans (see Section 3) but that is not a goal 
of the EBL module. For the EBL module to learn control knowledge that improves the quality of ihc 
plans, it would be necessary to augment the domain theory and target concepts to be able to explain, or 
prove, why the solution obtained in the current problem solving episode is a good one. Something similar 
may be said of systems that perform static analysis on the problem space representation [Etzioni, 1990, 
Perez and Etzioni, 19921. 

The derivational analogy module of PRODIGY I Veloso, 19921 stores past problem-solving experiences as 
cases, and reuses them to solve similar problems, obtaining a considerable improvement in problem solving 
efficiency. The use of one or more past cases to solve the current problem may lead to shorter plans, as 
reported in 1 Veloso, 19921. This was a surprising result but not the focus of the work. Note in fact that if 
the solution stored to solve a prob'em was not a good one, it ma> be reused to solve subsequent problems 
without trying to find a better solution. 

PRODIGY'S abstraction planning module iKnoblock, 1991al divides the axiomatized domain knowledge 
into multiple abstraction levels. Then during problem solving, a solution is found first in the top-level space 
to guide the search for solutions in more detailed problem spaces. The use of abstraction hierarchies reduces 
the problem solving space but does not guarantee that the solution obtained is the best one (see iCarbonell 
et ai, 19921 for an example). However it may lead to produce shorter solutions since the abstractions focus 
the problem solver on the parts of the problem that should be solved first.  [Knoblotk, 199Ibl presents 
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experiments in which the use of abstractions produces solutions that are about 10% shorter than (hose 
produced by PRODIGY in certain domains. Note that the measure of plan quality used in this case is the 
length of the plan, and it seems that these results do not extend to other quality metrics. 

In the work reported here we will focus on the part of the taxonomy related to execution lost. Sec 
Section 6 for a description of the proposed work plan. 

3   Solution Quality and Goal Interactions 5 

Planning goals rarely occur in isolation. A planner must be capable of taking into account the interactions 
between conjunctive goals in order to produce a plan to solve the problem. There have been many research 
efforts addressing the issue of planning for conjunctive goals, focusing on a variety of aspects, including 
Ä-ialyzingt^e complexity of this planning problem [Sussman, 1975, Chapman, 19871, designing appropriate 
planning algorithms [Sacerdoti, 1977,Täte, 1977, Drummond and Currie, 19871,categorizing differenttypes 
of goal interactions [ Wilensky, 19831, and leam. . control knowledge to efficiently handle the search for the 
interactions [Minton, 1988, Etziom, 1990). QL ork. though b-'ilt upon ihm prev;ouÄ work, goes beyond 
it as wc aim at identifying goal interactions directly relatM to the quality of the plans produced. 

From a practical implementation point of view we distinguishtwo categories of goal interactions, explicit 
goal interactions and quality goal interactions. 

3.1   Explicit goal interactions 

We include in this category the goal interactions that are explicitly represented as part of the domain 
knowledge in terms of preconditions and effects of the operators. A plan exhibits a goal interaction of this 
type when there is a goal in the plan that has teen negated by a previous step in the plan [Minton, 1988, 
Etziom, 1990). These goal interactions enforce particular goal orderings in order that the planner may be 
able to produce a solution to the problem. In a typical example of a two-goal interaction, after one of the 
goals has been achieved, it is deleted by an operator that works towards achieving the other goal. 6 

Goal interactions in this category include the well-known Sussman's anomaly in the blocksworld I Suss- 
man, 19751. Consider also another illustrative example in a transportation domain. In this domain, packages 
are to be moved among different cities. Packages are carried within the same city in trucks and across cities 
in airplanes. Trucks and airplanes may have limited capacity. At each city there are several locations, e.g. 
post offices (po) and airports (ap). A package PI is at the Pittsburgh airport. There is only one airplane, 
Al, available also at the Pittsburgh airport. The goal consists of having both the airplane and the package 
at the Boston airport, and is represented by the conjunction (and (at-airplane Al bos-airpcrt) 
(at-object PI bos-airport). If the goal (at-airplane Al bos-airport) is addressed liri. and 
AI flies from Pittsburgh to Boston, there is no way to achieve the second goal without first flying bark AI to 
Pittsburgh. The resulting plan involves flying Al back and forth unnecessarily. It is conceivable to design 
an algorithm that fixes this kind of plans by removing unnecessary operations that rcachieve the clobbered 
goals [Rich and Knight, 19911. 

In some problems, these interactions are unavoidable and the planning system must lind a solution that 
minimizes their effects. When this happens, search time is typically reduced and better solutions tend to be 

'This section appears, extended, in (P^rez and Veloso, 1993! 

6Other goal interactions in this category may be beneficial to the planning process, when solving one goal makes a second goal 
easier to achieve. This is generally termed goal concord and opportunistic planning takes advantage of these situations I Converse 
and Hammond. 19921. 
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found. These solutions arc generally shorter in length, and more direct iMinton, 1988, Ryu and Irani, 1992, 
Veloso, 19921. >! 

In least-commitment planners the critics take care of these goal interactions by establishing ordering 
constraints srnong the conflicting goals. In the case of PRODIGY, a casual-commitment planner, goal 
preference contrc1 knowledge is automatically acquired to deal effectively (in the sense of problem solving 
effort) with this kind of goal interactions by different machine learning approaches, namely explanation- » 
based learning [Minton, 19881, static analysis lEtzioni, 19901, or derivational analogy I Veloso, 19921. 

A particular problem may have many different solutions. These solutions may differ in the set of 
operators in the plan. If the ordering constraints between achieving two goals are explicit in the domain 
representation, then all the solutions to a particular problem will have the two goals interacting. On the 
other hand *he dependencies may be the result of a particular problem solving path explored. In this case » 
for some solutions the goals may interct and for some others they may not. 

3.2   Quality goal interactions 

To illustrate this difference and to motivate the quality goal interactions, we further discuss different plans 
with ordering constraints that are or are not explicit in the domain. In the one-way rocket domain (Veloso, 
19891, the goals of moving two objects to a different location interact, because the rocket can only move once. 
This is an interaction that is represented in the domain definition as the moving operator explicitly deletes 
the location of the rocket. The machine-shop scheduling domain [Minton el ai, 19891 also constraints that 
holes in parts must be drilled before parts are polished, as the drilling operator deletes the shining effect. In 
this domain, the goals of polishing and making a hole in a part interact again due to the domain definition. % # 

However, in this same machine-shop scheduling domain, when two identical machines are available to 
achieve two identical goals, these goals may interact, if the problem solver chooses to use just one machine 
6o achieve both goals, as it will have to wait for the machine to be idle. If the problem solver uses the two 
machines instead of just one, then the goals do not interact in this particular solution. 

There is a variety of equivalent examples in the logistics transportation domain.  In general it is not | 
clear what use of resources is overall the best. For example, in the logistics transportation domain, suppose 
that the problem solver assumes that the same truck (or airplane) must be used when moving objects from 
the same location into the same (or close) destiny. In this case the goals of moving the objects interact. 
But if different carriers are chosen, there is not such interaction. Note that the problem can become quite 
complicated as the domain considers other types of constraints, such as capacity for the carriers, size of the 
objects to be transported, distances between locations that dictate the type of carrier to use, and so on. 

In the example presented in Section 1.1 the planner obtains the better solution by interleaving the 
problem goals. In PRODIGY this decision may be encoded in the form of search control rules. Note that if 
the goal interactions are not considered the planner still constructs a valid solution. It is only because of 
quality considerations that the interactions occur as the same set-up is used for achieving the goals for both 
holes. These interactions are not explicitly represented in the domain specification. I 

These interactions are related to plan quality as the use of resources dictates the interaction between 
the goals. The control knowledge that guides the planner to solve these interactions is harder to leam 
automatically, as the domain theory does not encode these quality criteria. Our work is a current research 
effort on learning control knowledge to improve the quality of the plans generated by the problem solver. 

Some of the interactions between goals are due to the use of a state-space planner, as the operator | 
ordering in the final plan is tied to the goal ordering during problem solving. By using a plan-space planner, 
in which actions can be inserted anywhere in the plan, some of these problems may go away. However 
there is still the issue of which is the appropriate control knowledge, heuristics or critics, to select the best 
place to insert actions into the plan. There arc a few other planners that analyze the relationship between 
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goal interactions and plan quality. Section 7.1 discusses some of this related work. 

4   Background: The PRODIGY Problem Solver 

PRODIGY is a domain-independent problem solver. Given an initial state and a goal expression, PRODIGY 
searches for a sequence of operators that will transform the initial state into a state that matches the goal 
expression, PRODIGY'S sole problem-solving method is a form of means-ends analysis. Table 1 describes 
the basic search cycle of PRODIGY'S nonlinear planner 1 Veloso, 19891. A complete desenption of PRODIGv 
appears in [Carbonell etai, 1992]. 

1. Check if the goal statement is true in the current state, or there is a reason to suspend the current search path. 

If yes, then either return the final plan or backtrack. 

2. Compute the set of pending goals Q, and the set of possible applicable operators A. 
3. Choose a goal G from Q or select an operator A from A that is directly applicable. 

4. If G has been chosen, then 

• get the set 0 of relevant operators for the goal, 
• choose an operator 0 from O, 
• get the set B of possible bindings for O, 
• choose a set B of bindings from B, 
• go to step 1. 

5. If in operator A has been selected as directly applicable, then 

• apply A, 
• go to step 1. 

Table 1: A Skeleton ef PRODIGY'S Nonlinear Search Algorithm (Adapted from I Veloso, 19891). Problem 
solving decisions, namely selecting which goal/subgoal to address next, which operator to apply, what 
bindings to select for the operator, or where to backtrack in case of failure, can be guided by control 
knowledge, PRODIGY'S trace provides all the information about the decisions made during problem solving 
so it can be exploited by machine learning methods. 

PRODIGY provides a rich action representation language coupled with an expressive control language. 
Preconditions in the operators can contain conjunctions, disjunctions, negations, and both existential and 
universal quantifiers with tyoed variables. Effects in the operators can contain conditional effects, which 
depend on the state in which the operator is applied. The control language allows the problem solver to 
represent and leam control information about the various problem solving decisions, such as selecting which 
goal/subgoal to address next, which operator to apply, what bindings to select for the operator or where to 
backtrack in case of failure. In PRODIGY, there is a clear division between the declarative domain knowledge 
(operators k d inference rules) and the more procedural control knowledge. This simplifies both the initial 
specification of a domain and the incremental learning of the control knowledge. 

PRODIGY is designed with a "glass-box" approach: all the steps taken, all the decisions made, and all 
the information consulted by the engine are available in a problem's trace. This provides an information 
context in which learning can take place. Previous work on PRODIGY used explanation-based learning 
techniques, static analysis of the domain definition [Minton, 1988, Etzioni. 1990, Pdrcz and Etzioni, 19921, 
and derivational analogy [Veloso, 1992] to acquire search control knowledge to increase problem-solving 
efficiency. The machine learning and knowledge acquisition work supports PRODIGY'S casual-commitment 
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method 7, as it assumes there is intelligent control knowledge, exterior to its search cycle, that it can rely 
upon to make decisions. 

4.1 Example Domains 

The examples presented throughout this document are extracted from two domains: a transportation logistics 
domain, and a machining process planning domain. These are the most complex and real-world domains to 
which PRODIGY has been applied up to date. In this section we describe them brielly.8 

4.1.1 The Transportation Logistics Domain 

This is a complex logistics planning dorßäin in which packages are to be moved among different cities. 
Packages are carried within the same city in trucks and across cities on airplanes. Each truck operates in a 
single city. At each city there are several locations, e.g. post offices and airports. There are six operators in 
the domain namely loading and unloading trucks and airplanes, driving trucks between locations, and Hying 
airplanes between airports. In the current version trucks and airplanes have unlimited capacity. The domain 
could be extended in different ways, for example to consider the capacity of the carriers and package sizes, 
the fuel consumption, and/or the distance between cities. 

In this domain interleaving of goals and subgoals at different levels of the search is needed to lind a 
good solution: consider for example the problem of moving two given packages from the Pittsburgh airpon 
to the Boston airport. Accomplishing either goal individually, as a linear planner would do, would require 
using a different airplane (or a different trip of the same airplane) for each of the packages, which is clearly 
an inefficient way to solve the problem, PRODIGY'S nonlinear algorithm may delay flying the airplane until 
both packages are loaded by means of control rules. 

4.1.2 The Machining Process Planning Domain 

Section 1.1 described this domain and introduced an example taken from it. This domain is to date the 
largest one implemented in PRODIGY. It has 75 operators and 35 .nference rules. IGil, 19911 describes it 
in detail. Some of the problems used to test the domain were taken from real engineers specifications as 
presented in [Hayes, 19901 and the number of operators (not including inference rules) in their solution 
ranges between 35 and 70. 

4.2 PRODIGY Decisions that Affect Plan Quality 

The previous section presented the types of decision points in PRODIGY'S search cycle. These decisions may 
influence the quality of the final plan and encode available expert knowledge. Some examples follow: 

• Goal ordering: in the example in Section 1.1 choosing the right goal ordering reduced plan length. In 
general, asymmetric goal interactions yield a preferred optimal goal ordering to minimize clobbering 
of previously achieved goals. Here we present another example of how goal ordering decisions 
influence plan quality. Suppose the problem posed to PRODIGY is to have a part with two holes, 
one opening into another. This can be encoded as the conjunction of two goals, one for each hole. 

In a casual-commitment strategy at each decision point the planner commits to a particular alternative, and backliacks upon 
failure. This is in contrast to a least-commitment strategy where decisions are deferred until all possible interactions are recognized. 

Throughout this document several examples are presented.   In them we follow PRODIGY'S standard notation:  instantiated 
operators are enclosed in <> and literals, both state literals or goals, arc enclosed in (). 
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If a hole H\ opens into another hole Hi, then one is recommended machining flz before 
//i in order to avoid the risk of damaging the drill. [Descottc and Latombe, 19851 

This advice can be translated into a search control rule. The antecedent preconditions match when 
one of the holes actually opens into another. The consequent recommends with which hole to start 
planning. It is interesting to realize that the expert advice may apply only in some circumstances. If 
machining the holes in the opposite order is faster, the right decision could have been different, and 
the rule should only fire when the risk of damaging the drill is more important than the time spent on 
the operations. Therefore different control rules, or control rule sets, may encode different strategies. 

In some cases choosing the appropriate goal ordering is required to deal with goal interactions, 
both positive and negative. Section 3 presented some examples in which choosing the right goal 
interleaving produces better plans. 

• Operator preferences: suppose PRODIGY'S goal is to reduce the size of a part. Some of the candidate 
operators to achieve this goal are SHAPE, SHAPE-WITH-PLANER, and MILL. The following expert 
advice may be useful to decide which operator to try first, and can be translated into one or more 
control rules whose consequents propose the appropriate operator. 

In most shaping and planning operations, cutting is done in one direction only. The return 
stroke represents lost time. Thus these processes are slower than milling and broaching, 
which cut continuously. On the other hand, shaping and planning use single-point tools 
that arc less expensive, arc easier to sharpen, and are conducive to quicker set-ups than 
the multiple-point tools of milling and broaching. This makes shaping or planning often 
economical to machine one or a few pieces of a kind. ([Doyle, 19691, p. 597). 

• Binding preferences: suppose PRODIGY is asked now to solve a problem in the logistics domain. The 
goal is to move Packages from the airport to the post office, and to do this two trucks, Truck I and 
Truck2, are available at the airport. Truck 1 has a bigger capacity, and therefore is more expensive 
to use, than Tnick2. However Truck2's driver is known to be less reliable that Truck 1 's driver. To 
achieve the goal, PRODIGY picks operator UNLOAD-TRUCK. Then the next decision, a bindings 
choice, is which truck to use. If the strategy is to keep the cost low, Truck2 should be preferred, but if 
reliability of the plan is the major factor Truck 1 should be used in spite of its greater cost. Note that 
the choice of bindings may influence the operators that follow. Section 5.2.1 presents this example in 
detail. 

5   Work to Date 

In order to establish the feasibility of the research proposed in this document, initial investigations were 
conducted on acquiring control rules to enhance plan quality. In this section we describe the prototype 
implemented to date. The viability of the approach and the use of the prototype arc illustrated with two 
examples from the logistics transportation domain. 

5.1   Semi-Automated (Interactive) Acquisition of Quality-Enhancement Control Rules 

As mentioned in Section 2.6.1, all the methods to acquire control knowledge for PRODIGY focus on improving 
the planner's efficiency by reducing the search space. The work proposed here intends to acquire control 
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PRODIGY has to start deciding on which hole to work first, i.e. which of the two goals try to achieve * 
first. The following advice may be used to guide PRODIGY'S decision: 
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knowledge that guides search in order to improve the quality of the solutions obtained by the planner. The 
metrics of solution quality on which we focus are the plan length and the cost of executing the plan. So far 
we have concentrated on the acquisition of search control rules. These rules provide guidance during search ♦' 
to make local decisions. However it is not clear yet whether these local decisions will be enough to lead 
the problem solver towards better solutions, or PRODIGY'S control structure will have to be extended. The 
control rules encode the knowledge extracted from a domain expert: knowledge about why a solution is 
better than other, and about how to modify a solution to improve its quality. We do not claim that these rules, 
or more generally, control knowledge, will necessarily guide the planner to find optimal solutions I Simon, 
19811, but that the quality of the plans will incrementally improve with experience, as the planner sees new 
interesting problems in the domain and interacts with the domain expert. 

Table 2 shows the process we have implemented to date in order to acquire control knowledge from an 
expert. The next subsections describe its steps in more detail. 

1. Run PRODIGY with the current set of control rules and obtain a solution Sp, or alternatively set S,. empty. 

2. lfSp, 

Show Sp to the expert. 
Expert provides new solution 5e by modifying Sr: adding, removing, or interchanging plan operators, or 
modifying their bindings. 

Otherwise (no; ■ !*ial solution Sp is available) 

Expert provides completely new solution, Se. 

3. Test Se. If it solves the problem, continue. Else go back to step 2. 

4. Compute the partial order P for Se. 

5. Determine the set of decision points DP in the problem solving uacc where control knowledge is required to 
obtain a solution ,b' that satisfies P 

6. Run PRODIGY stopping at each of the points in DP and acquire control knowledge from the expert to make the 
nght choice. 

7. If expert still wants to improve the current solution SI, 

Set5p -SI. 
Go to step 2. 

Otherwise terminate. 

Table 2: The Basic Process for Incremental Control Knowledge Acquisition. The expert provides a solution 
he considers good either by modifying the one proposed by the planner, or by enumerating all the operators. 
Then the system acquires control knowledge that will guide the planner towards the better solution. 

5.1.1    Getting a Solution from the Expert 

In step 2 the expert provides PRODIGY with a solution Se that he considers better than the one PRODIGY obtains 
with the control knowledge currently available (we call the latter S,,). The purpose is to acquire control 
knowledge so that should PRODIGY sec the same problem again, the better solution would be obtained. The 
expert may use Sp as a basis to build Se. However in somt :ases having the planner iind just one solution 
(5p) is very expensive if control knowledge is not sufficient, and therefore we provide the capability that 
the expert can build a solution (.SV) from scratch to start with. 
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In the domains wc have experimented with, solutions tend to be long and the operators include a lot of I 

parameters. It seems useful to provide the expert with good tools to input a solution. The current interface 
allows him to build a solution by putting together some or all of Sp's operators and adding new operators, if ^' 
needed, by typing the operator name and all its bindings. We intend to extend the interface to allow edition 
of the old solution, propose default values for the parameters in the new operators, and facilitate step-wise 
execution of the plan, among other things. I 

Note that it is possible that an expert would prefer to solve the problem using operators not yet in 
the domain specification. The APPRENTICE system [Joseph, 19921 acquires such base-level or domain 
knowledge for PRODIGY. 

5.1.2 Determining Where Control Knowledge Is Needed . 

In step 5, the system finds the decision points where PRODIGY'S current control knowledge needs to be 
modified so the expert's solution is found. In fact, the planner searches for any solution that satisfies the 
partial order obtained from 5e.  A partial order, or partially ordered plan, encodes a set of solutions, or 
totally ordered plans. All of them have the same operators, and satisfy a set of ordering constraints. One 
step op, precedes another step opj in the partial order if and only if opt adds a precondition of op,, or opj | 
deletes a precondition of op,. The partial order of a plan can be obtained efficiently I Veloso et ai, 19901 
in negligible time compared to the time needed to generate the totally ordered plan. We are assuming that 
the quality of the plan is the same for all the plans encoded in the tota' order, since they all have the same 
operators. For example, if two packages have to be loaded in the same truck, and we ignore package sizes 
and truck capacities, the order in which the packages are loaded is irrelevant with respect to plan quality. ^ 
By allowing any solution in the partial order, we reduce the amount of control knowledge that needs to be 
acquired. However this heuristic would not be valid in domains where constraints on the order of operators, 
other than the ones encoded in the partial order, influence the plan quality. 

DP is the set of decision points for which control knowledge needs to be incorporated. By looking to 
the trace for Sp and to the expert's plan S^, the system proposes a set of possible candidate points where 
a different decision should be made, and the preferred decisions themselves, PRODIGY starts to solve the I 
problem again following the first of those recommendations. If it does not lead to S,, it is discarded and 
another one tried in turn. For each recommendation mis process is repeated recursively: when the planner 
realizes that the current path will not lead to a solution that satisfies the partial order, the path is abandoned, 
candidates for wrong decision points are found, and PRODIGY backtracks to one of those candidates and 
tries a different path. 9 This process can be seen as searching on the space of decision points in the trace. | 
until a set, DP, is found that leads to a solution V'. 

5.1.3 Acquiring the Relevant Knowledge 

If PRODIGY runs following the recommendations in DP, it will obtain plan S',.   Each recommendation 
contains a decision point, the alternative that leads to .V', and a reason why that alternative should be chosen ' 
(for example, an operator ordering would be violated otherwise, or a different binding would be chosen 
instead that the one the expert proposed). In step 6 PRODIGY restarts problem solving again stopping at each 
of those decision points, and requesting the expert's advice. This advice is translated into search control 
rules that will fire making the appropriate choices. Note that the alternative to take is known at this point and 
it becomes part of the rule's consequent. The rule's preconditions, or left-hand side, encode the situations | 
in which that decision should be made.  Some of the preconditions can he automatically extracted from 
the current meta-state. These are the current goal, and also the curren' ir if we are dealing with a 

'All this process is perfonned through domain-independentrules specially design >lc. 
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10A clear example of this deals with operator ordering (see example pghl): if opi has to be applied before opj in the expert's 
solution, and PRODIGY has expanded opi already, o/)2 cannot be expanded until opi has been applied, or else the required ordering 
cannot be satisfied. Therefore the condition thai opi is expanded but not applied yet can be automatically added to the rule for 
rejecting nm, or even to a rule for rejecting the goal for which opi is relevant. 

1' However we cannot decide in general that the final solution in that path is going to be worse than S,,. 
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bindings decision. Also, it" the reason why the system detected that a different alternative should be taken • 
relies on other available knowledge, that knowledge is added to the rule.10 At this point we need to acquire 
from the domain expert the knowledge that justifies the decision. We want to rely as less as possible on the 
expert's knowledge about the planner itself. In particular it is hard even for PRODIGY experts to explain, for 
example, why the reason for the inefficient solution is a goal ordering at a particular point of the trace. On 
the other hand we need to extract knowledge that can be operationalized, i.e. transformed into control rule | 
preconditions that match the current meta-state. 

The approach followed here is to get the expert's knowledge in terms of the current state, top level goals, 
and possibly the pending goals. To extract this knowledge, the expert is asked for the reasons as possible 
in terms of the proposed solution: why he/she decided to use a particular operator or to change the order 
of some operators with respect to their order in the planner's solution. That information is captured in the 
recommendation. The expert interacts by pointing to menu items. 

Once the items that will become part of the rule preconditions are chosen, they need to be generalized. 
At this point generalization means simply to replace constants by variables. However it is not a trivial 
process. All the objects have types in PRODIGY and therefore new preconditions should be added that 
constrain the values that variables may take. In some cases the values arc so specific that the constants have 
to remain. These constraints may be extracted from the type hierarchy, but in some cases the expert may • 
decide to specify the set of values that the variable can take as a combination of different types (for example, 
any drill bit that is not specifically used to make a spot hole can be expressed in PRODIGY'S language as 
(comp DRILL-BIT SPOT-DRILL)). 

It is not hard to imagine that the control rules acquired from the expert in a particular problem solving 
context may be too general or too specific. These rules then provide inappropriate advice when the situation | 
is slightly different. 

5.1.4    Variations to the Algorithm 

The algorithm in Table 2 may be modified to rely less in the domain expert. Table 3 reflects lhe.se changes. 
Instead of prompting the expert for another solution, PRODIGY can run in its multiple-solution mode until it * 
finds a new solution. Then the system may decide by itself if a giveii solution is better than other or else it 
can ask the expert for his preference. Then the algorithm proceeds as before. 

We have tested this variation in the transportation domain and run into practical problems: PRODIGY 
may require an impractically large amount of search before it finds the next substantially better solution. 
Before it backtracks to a point that would lead to an interestingly different solution, it tries many lesser I 
variations of the current one, by selecting different alternatives near the leaves of the search tree. We would 
like to experiment with different schemas to solve this difficulty, such as imposing resource bounds (time 
or number of nodes), abandoning a path when the partial solution found so far looks worse than Sr '', 
or trying backtracking stiategies different from chronological backtracking. These heuristics seem very 
domain dependent and we have not explored them so far. I 
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1. Run PRODIGY with the current set of control rules and obtain a solution S,,. If Sp is good enough, terminate. 

2. Find next solution S„. If no one is found, terminate. 

3. Decide whether 5„ is better than 5p using prior knowledge or asking of the expert. 

4. If 5n is not better than 5p, go back tc Step 2. 

5. Determine the set of decision points DP in the problem solving trace where control knowledge is required to 
obtain a solution i',,. 

6. Run PRODIGY stopping at each of the points in DP and acquire control knowledge from the expert to make the 
right choice. 

7. SetSp «-5„. 
Go to step 2. 

Table 3: A Modified Version of the Basic Process. In this case PRODIGY runs in its multiple solutions 
mode and finds the better solution by itself, instead of having the human expert input it. It needs however 
knowledge about why a solution is better than other. 

*) 

5.2    Detailed Examples 

In this section we present two examples to illustrate the viability of quality solution enhancement using 
control rules, and the use of the method described in Section 5.1. Section 5.2.1 presents a simple example 
in which rules control the use of resources in the plan according to both reliability and cost. The example in 
Section 5.2.2 illustrates how choosing the right goal interleaving leads to better plans, in particular shorter 
plans. 

5.2.1    A Simple Example: Choosing Different Resources 

In this problem the goal is to move packages from the airport (pgh-airport) to the post office (pgh-po), 
and to do this there are two trucks available at the airport, ptl and pt2. In addition there are other facts 
known about the trucks and the kind of solution preferred, that are not used by the operators. Figure 6 
summarizes this problem. 

po 

INITIAL STATE: 
Pg 

Pl1  1 »öl 

ap 

(driver ptl reliable) 
(capacity ptl large) 
(driver pt2 unreliable) 
(capacity pt2 small) 
(strategy resource-cost-min) 

GOAL STATEMENT: 
Pg 

0 
po ap 

Figure 6: Initial State and Goal Statement for Problem cap. p3 has to be moved from the airport pgh-ap to 
the post-office po. Using truck pt2 is cheaper because its capacity is smaller, but using truck ptl produces 
a more reliable solution. 

The planner automatically comes up with this solution, that uses pt 1: 

<load-truck packages ptl pgh-airport> 
«irive-truck ptl pgh-airport pgh~po> 
<unload-truck packages ptl pgh-po> 
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but the expert prefers to use truck pt2 to solve this problem, since the strategy is to reduce the resource 
cost. pt2 is cheaper since its capacity is smaller. 

A dialog is initiated once the planner solves the problem. First the new solution is built taking into 
account what the expert proposes, use pt2 instead. Then the knowledge acquisition module queries the 
expert in a way that requires no knowledge of PRODIGY internals: 

Why is not the solution good enough? 
1. Unnecessary steps. 

2. Resources too costly. 

3. Reliability problem. 

Answer: 2 

This is the initial solution obtained by the planner: 

1. <load-truck packages ptl pgh-airport> 

2. <drive-truck ptl pgh-airport pgh-po> 

3. <unload-truck packages ptl pgh-po> 

Which resource do you want to replace? ptl 
New value: pt2 

In which operators  (optional): 

Testing the expert solution... 

The plan given is a solution to the current problem. 

Now the system has to find out why pt2 is a better alternative: 

These are the diffs between the two objects,  ptl  and pt2: 
1. (capacity ptl large) 

2. (driver ptl reliable) 
3. (capacity pt2 small) 

4. (driver pt2 unreliable) 
Select one or more: 1 3 

With this information, a new control rule is built that decides about the resource to use: 

Run problem again to acquire binding control rules. 

2 n2 (done) 

4 n4 <*finish*> 

5 n5 (at-obj packages pgh-po) 

There is a new binding decision stored at this node. 

This is the rule acquired: 

(CONTROL-RULE ACq32 

(IF 

(AND (TRUE-IN-STATE (STRATEGY RESOURCE-COST-MIN)) 

(TRUE-IN-STATE (CAPACITY <TRUCK1> LARGE)) 

(TRUE-IN-STATE (CAPACITY <TRUCK2> SMALL)) 
(DIFF <TRUCK1> <TRUCK2>))) 

(THEN PREFER BINDINGS ((<TRUCK> . <TRUCK2>)) ((<TRUCK>  <TRIin<l>)))) 

Testing the control rule: 

The Ihs would match with these bindings: 
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(((<TRUCK2> . #<P-0: PT2 truck>) (<TRUCK1> . #<P-0: PT1 truck>))) 

and this is the result of firing the rule: 

Prefer ((<TRUCK> . #<P-0: PT2 truck>)) 

over ((<TRUCK> . #<P-0: PT1 truck>)). 

7 n7 <unload-truck packages pt2 pgh-po> [1] 

8 n8 (inside-truck packages pt2) 

10 nlO <load-truck packages pt2 pgh-airport> [1] 

11 nil <LOAD-TRUCK PACKAGES PT2 PGH-AIRPORT> [1] 

12 nl2 (at-truck pt2 pgh-po) 

14 nl4 <drive-truck pt2 pgh-airport pgh-po> 

15 nl5 <DRIVE-TRUCK PT2 PGH-AIRPORT PGH-P0> 

15  nl6 <UHL0AD-TRUCK PACKAGES PT2 PGH-P0> 

Achieved top-level goals. 

Solution: 

<load-truck packages pt2 pgh-airport> 
<drive-truck pt2 pgh-airport pgh-po> 
<unload-truck packages pt2 pgh-po> 

Note that in this example it is enough with replacing the decision at n7. The other binding decisions arc 
determined by this one. 

5.2.2   Finding the Right Goal Interleaving 

In this problem the key to find a good solution is on interleaving the work in both top-level goals. Plan 
length is the metric of plan quality considered (although in this case the shorter solution makes in addition 
a more efficient use of the available resources). The example shows the use of the algorithm wc presented 
in Section 5.1. The problem goal is to move a package, pi, from pgh-po to bos-po. In the initial state 
there is a truck at each post office, and two planes at pgh-airport. Figure 7 shows the initial stale and 
goal statement for this problem. 

>) 

INITIAL STATE: 

po ap 
ED 

> n 
GOAL STATEMENT: 
 El  

po ap 

M 

ED 
po ap po ap 

Figure 7: Initial State and Goal Statement for Problem pghl. The problem goal is to move a package, 
pi, from pgh-po to bos-po. In the initial state there is a truck at each post office, and two planes at 
pgh-airport. 

PRODIGY solves the problem, using some default control knowledge and obtains an inefficient solution 
(I will refer to this as the planner's solution): 

1. <load-truck packagel pgh-truck pgh-po> 
2. <lly-airplane airplanel pgh-airport bo8-airport>  Airplane flies unnecessarily. 
3. <drive-truck pgh-truck pgh-po pgh-airport> 
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4. <fly-airplane airplanel bos-airport pgh-airport> Airplane returns. 
5. <unload-truck package 1 pgh-truck pgh-airport> 
6. <load-airplane packagel airplanel pgh-airport> Once packagel is loaded, '.Wj 
7. <fly-airplane airplanel pgh-airport bos-airport> fly makes sense. 
8. <unload-airplane packagel airplanel bos-airport> Package arrives to boston, 
9. <drive-truck bos-truck bos-po bos-airport> 
10. <load-truck packagel bos-truck bos-airport>     and goes by truck to bos-po. | 
11. <drive-truck bos-truck bos-airport bos-po> 
12. <unload-truck packagel bos-truck bos-po> 

Note that airplanel flics unnecessarily. Now the system presents to the expert the solution obtained by the 
planner and prompts him for a new and better solution. He may vary the order of the steps, remove steps, or 
add steps, or the solution can be completely different. In fact, the expert could provide a solution without I 
having the planner solve the problem first. This is useful when the planner gets lost searching thousands of 
nodes because it lacks the appropriate control knowledge. However it is often easier to critique or modify a 
solution - therefore the planner usually offers one to the expert as a starting point. Once the expert gives the 
solution it considers better, PRODIGY first tests it to make sure that it will actually solve the given problem. 

Enter sequence of operator numbers with the new ordering of steps: 
(put a • for a diff operator) 1 3 5 6 7 8 9 10 U 12 

The expert solution is: 

I. «LOAD-TRUCK [<0BJ> PACKAGF.l] [<TRUC,f-- PGH-TRUCK] [<L0C> PaH-P0]> 
3. «<DRIVE-TRUCK [<TRUCK> PGH-TRUCK] [<U,C-FR0H> PGH-PO] [<L0C-T0> PGH-AIRP0RT]> |    £ 
5. «<UNL0AD-TRUCK [<0BJ> PACKAGE1] [<TRUCX> PGH-TRUCK] [<L0C> PGH-AIRPORT]> 
6. «<L0AD-AIRPUNE [<0BJ> PACKAGE1] [<AIRPLANE> AIRPLANE1] [<L0C> PGH-AIRPORT] > 
7. »<FLY-AIRPLAME [<AIRPUNE> AIRPLANE1] [<LDC-FR0M> PGH-AIRPORT] [<L0C-T0> BOS-AIRPORT]> 
8. «<UNLOAP-AIRPLANE [<0BJ> PACKAGE1] [<AIRPLANE> AIRPLANElJ [<L0C> BOS-AIRPORT]> 
9. #<DRIVE-TRUCK [<TRUCK> BOS-TRUCK] [<L0C-FR0M> BOS-PO] [<L0C-T0> BOS-AIRPORT]> 
10. #<L0AD-TRUCK [<0BJ> PACKAGE1] [<TRUCK> BOS-TRUCK] [<L0C> BOS-AIRPORT]> 
II. »<DRIVE-TRUCK [<TRUCK> BOS-TRUCK] [<L0C-FR0M> BOS-AIRPORT] [<L0C-T0> BOS-PO]> I 
12. »<UNL0AD-TRUCK [<0BJ> PACKAGEl] [<TRIJCK> BOS-TRUCK] [<L0C> BOS-PO]> 

Testing the expert solution... 

The plan given is a solution to the current problem. 

I 
The system currently implemented detects the point(s) at which wrong decisions were made. It may 

backtrack and try different alternatives, until it solves the problem obtaining the solution proposed by the 
expert. Actually it obtains a solution that satisfles the partial order obtained from the expert's solution 
by enforcing dependencies between operator preconditions and previous operator effects. For example, it 
assumes that if two operators are not ordered in the partial order, their order docs not matter. In this case 
airplanel flies unnecessarily due to a wrong goal interleaving after n26: achieving goal (at-airplane 
airplanel bos-airport; should be postponed until the package is inside of the airplane. This was (part 
of) PRODIGY'S trace: 

5  n5 (at-obj packagel bos-po) 
7 n7 <unload-truck packagel bos-truck bos-po> 
8 n8 (inside-truck packagel bos-truck) 
10    nlO <load-truck packagel bos-truck bos-po> [1] ...goal loop with node 5 
10 nil <load-truck packagel bos-truck bo8-airport> 
11 nl2 (at-obj packagel bos-airport) 
13     nl4 <unload-truck packagel bos-truck b03-airport> ...goal loop with node 8 
13     nl6 <unload-airplane packagel airplanel bos-airport> [1] 
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14 nl7 (inside-airplane package 1 airplanel) 
16 nl9 <load-airplane packagel airplanel pgh-airport> 
17 n20 (at-obj packagel pgh-airport) *t' 
19 n22 <unload-truck packagel pgh-truck pgh-airport> 
20 n23 (inside-truck packagel pgh-truck) 
22 n25 <load-truck packagel pgh-truck pgh-po> [1] 
23 n26 <L0AD-TRUCK PACKAGE1 PGH-TRUCK PGH-P0> [3] I 
24 n27 (at-airplane airplanel bos-airport) [2] 
26 n29 <fly-airplane airplanel pgh-airport bos-airport> 
27 n30 <FLY-AIRPLANE AIRPLANE1 PGH-AIRPORT B0S-AIRP0RT> [2] 

The system points the crucial decision in the current example, namely: 

— Wrong decision made after node 
«<APPLIED-OP-HQDE 26 »<L0AD-TRUCK [<0BJ> PACKAGE1] [<TRUCK> PGH-TRUCK] [<L0C> PGH-POJ». 

Goal »<AT-AIRPLAHE AIRPLANE1 B0S-AIRP0RT> was chosen. 
Goal(s) #<AT-TRUCK PGH-TRUCK PGH-AIRP0RT> could have been chosen instead. 

To avoid making the wrong decision, PRODIGY has to acquire control knowledge. Our goal is to extract * 
from the expert the relevant knowledge and express it in the form of control rules. First, this is the rule I 
came up with when writing by hand the control rule set: 

(control-rule HAMD-CODED ;; reject moving the airplane if loading is needed 
(if (and (candidate-goal (at-airplane <airflane> <new-loc>)) 

(known (at-airplane <airplane> <loc>)) i     w 
(expanded-operator (LOAD-AIRPLAME <obj> <airplane> <loc>)))) 

(then reject goal (at-airplane <airplane> <new-loc>))) 

We want to rely as less as possible on the expert's knowledge about PRODIGY. In particular it is hard even 
for PRODIGY experts to explain why the reason for the inefficient solution is a goal ordering at a particular 
point of the trace. The code that detects the wrong decision point would help by itself quite a lot even to * 
PRODIGY experts. 

The appmach followed here is to get the expert's knowledge in terms of the current state, lop level 
goals, and possibly the pending goals. To extract this knowledge, the expert is asked for the reasons why 
he decided to use a particular operator or to change the order of some operators with respect to their order 
in the planner's solution. This is the rule that could be learned for this problem based on that information: % 

(control-rule TEST2 
(if (and (candidate-goal (at-airplane <airplane> <dest-airport>)) 

(expanded-operator (load-airplane <obj> <airplane> <orig-airport>)) 
(diff <dest-airport> <orig-airport>) 

(expanded-goal (at-obj <obj> <dest-po>)) " 

(known (inside-truck <obj> <truck>)) 
(known (at-truck <truck> <orig-po>)) 

(known (at-airplane <airplane> <orig-airport>)) 
(same-city <orig-airport> <orig-po>))) | 

(then reject goal (at-airplane <airplane> <dest-airport>))) 

The first three meta-predicates are obtained from the current meta-state. In particular, as the operator 
orderingviolatedatthenodewasthat<fly-airplane airplanel pgh-airport bos-airport>should 
be applied after <load-airplane packagel airplanel pgh-airport>, once load-airplane has 
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(8) 
been chosen, at-airplane cannot be expanded until load-airplane is applied so the order is not * 
violated. This gives us the lirst three preconditions and also allows us to write a goal reject rule (instead 

of a goal preference rule). 
The rest of the preconditions come from the information extracted from the expert. He was presented 

with the current state, and the top-level goals, namely: 

THE CURRENT STATE IS: 

•(inside-truck packagel pgh-truck) 
*(at-airplane airplanel pgh-airport) (at-airplane airplane2 pgh-airport) 

«(at-truck pgh-truck pgh-po) (at-truck bos-truck bos-po) 

(part-of bos-truck boston) (part-of pgh-truck pittsburgh) 

(loc-at pgh-po Pittsburgh) (loc-at pgh-airport pittsburgh) 

(loc-at bos-po boston) (loc-at bos-airport boston) ' 

(same-city bos-po bos-airport) «(same-city pgh-po pgh-airport) 

(same-city pgh-airport pgh-po) (same-city bos-airport bos-po) 

THE TOP LEVEL GOALS ARE: 

«(at-obj packagel bos-po) 

I 

The items marked with * are the ones the expert picked, and that appear in the rule after generalization. 
Obviously the state can be very large with many irrelevant features. Remember that we are asking the 

expert why he preferred a given operator, or a given ordering between two operators. In order to focus on 
the relevant state features, we could make use of these operators. 

Note that the rule TEST2 has more conditions that HAND-CODED, the one 1 wrote initially by hand. Note 
also that HAND-CODED is more general (it applies to more situations). We will have to analyze if there is a 
way to get rid automatically of some of the preconditions of TEST2. 

The goal mentioned in (expanded-goal  (at-obj  <obj> <dest-po>)) is an ancestror in the sub- 
goaling structure of the operator mentioned in the second precondition <load-airplane <obj> <airplane> 
<orig-airport>>. But if we remove it the rule may be overgcneral; it would (ire also if (at-obj   <obj> 
<dest-po>) is not an expanded goal, for example when the top level goal is (inside-airplane <obj> 
<airplane>). The generalization may be good, and in addition we could ask the user to guide it: 

You mentioned that a relevant goal was: 

(at-obj packagel bos-po) 

la it ok if the expanded goal is instead one of these: 

(inside-truck packagel bos-truck) 

(at-obj packagel bos-airport) 

(inside-airplane packagel airplanel) 

where the goals were obtained by going up the search tree. In this case the answer is yes, because the 
only thing that matters is that load-airplane, already expanded, should be applied before working on 
fly-airplane. 

5.3   Assumptions and Limitations 

The approach presented here makes some assumptions about the way control knowledge is available and 
can be expressed to guide the problem solver. First, we assume that global strategies to obtain good plans 
can be encoded as control rules that guide local decisions. Also we are assuming that an optimal decision 
is not required at each point, but rather that a qualitative model of the utility of the actions can be acquired 
and expressed as a set of control rules. A third assumption is that the factual knowledge, or domain 
knowledge, is correct and complete. We only worry about acquiring search control knowledge. Other work 
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6   Learning Quality-Enhancing Control Rules 

This section presents the work currently in progress for the automatic acquisition of quality-enhancing 
control knowledge. Our goal is to have a system that improves over experience the quality of the plans it 
generates by learning control knowledge to guide the search. Figure 8 shows the architecture of the current 
system. The system is given a domain theory (operators and inference rules) and a domain-dependent 
objective function that describes the quality of the plans. It is also given problems to solve in that domain. 
The system learns control knowledge by analyzing the problem-solving episodes, in particular comparing 
the search trace for the planner solution given the current control knowledge, and another search trace 
corresponding to a better solution (better according to the evaluation function). The latter search trace 
is obtained by letting the proolem solver search further until a better solution is found, or by askng a 
human expert for a better solution and then producing a search trace that leads to that solution. The control 
knowledge learned in this way leads future problem solving towards better quality plans. In some sense, 
there is a change of representation from the knowledge about quality encoded on the objective function into 
knowledge that the planner may use at problem solving time. We do not claim that this control knowledge 
will necessarily guide the planner to find optimal solutions, but that the quality of the plans will incrementally 
improve with experience, as the planner sees new interesting problems in the domain. 

Problems 

Domain Knowledge 
-operators 
-with cost 

Objective function 
(domain dependent) 

O Control  Knowle 
for  better plan 

dge 
s 

Control  Knowledge 
for  faster planning 

Figure 8: Architecture of a system to learn control knowledge to improve the quality of plans. 

Section 2 presented a taxonomy of quality metrics. A goal of our work is to validate and expand that 
taxonomy. We are exploring in more depth s^ne parts of the taxonomy, giving precise definitions of quality 
metrics for them. In particular we focus on reducing the execution cost of the plans generated, taking cost 
as sum of the execution cost of plan operators. We also expect to explore the possibility of using cases as 
control knowledge and of derivational analogy to extract and store those cases. Currently the derivational 
analogy module of PRODIGY [Veloso, 19921 stores past problem-solving experiences as cases, and reuses 
them to solve similar problems, obtaining a considerable improvement in problem solving efficiency. The 
use of one or more past cases to solve the current problem may lead to shorter plans, as reported in 1 Veloso, 
1992). This was a surprising result but not the focus of the work. Note in fact that if the solution stored to 

W 

on the PRODIGY architecture (Carboncll and Gil, 1990, Joseph, 1992] has focused on the acquisition and 
refinement of domain knowledge. Lastly, this model assumes that experts can give reasons for specific 
strategic decisions, rather than simply intuit correct sequences of decisions. ■Ar) 
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solve a problem was not a good one, il may be reused to solve subsequent problems without trying to lind 
a better solution. The use of this approach to learn quality-enhancing control rule may aifect the similarity j^\ 
metric to find relevant cases, and the language to express the justifications, in order to capture guidance 
about why the proposed solution is good. 

We plan to evaluate this work at each phase by testing empirically how plan quality improves over 
experience, as the number of problems seen by the system increases. The evaluation will be done for two l 

complex domains, namely those presented in Section 4.1 with sets of randomly generated problems in each 
domain. We also want to study if the addition of quality-enhancing control knowledge degrades problem 
solving efficiency, enhances it, or is orthogonal. If the first alternative is true, we need to establish trade 
offs between planning efficiency and plan execution efficiency. 

7   Related Work 

Although there have been a number of systems that learn control knowledge for planning systems, most of 
them are oriented towards improving search efficiency. There has not been much research done on cither 
improving the quality of plans or acquiring control knowledge from human experts.   In this section we I 
present some work on planning systems that worry about solution quality, and also on systems that acquire 
control knowledge. 

7.1   Work on Planning Systems and Plan Quality 

Several domain-dependent planners for the process planning domain deal with the quality of plans. Hayes' 
MACHINIST program [Hayes, 19901 generates plans in a machining process planning domain.  In this 
work the measure of plan quality is solution length. Human machinists often spend a large amount of time 
in the early planning stages looking over the part specification for feature interactions and exploring the 
limitations that those features impose on the plan.   Machinists have specialized knowledge which helps 
them to quickly focuson the situations in which interactions are likely. This knowledge is acquired through I 
experience. Hayes analyzed the way features interact and encoded this specialized knowledge in form of 
rules in the MACHINIST program. This program first constructs a plan that deals with feature interactions, 
and retrieves from memory a plan to square the part (squaring is getting the raw material into a square and 
accurate shape with the minimum waste of material). Then these two plans are merged to produce a final 
plan as short as possible. I 

SIPP (Nau and Chang, 19851 is a process planning system that produces plans for the creation of metal 
parts. It utilizes a frame hierarchy to represent problem solving knowledge. In particular, actions have cost 
slots that contain relative costs derived from actual process costs and shop preferences. The problem solving 
strategy utilizes a least-cost-first branch and bound algorithm to find the least-cost sequence of processes 
for making each of the part's machinable surfaces. SIPP selects the least cost manufacturing method for an 
individual feature, in isolation from considerations about other features, and therefore it does not care to 
find an overall low-cost plan. SIPP is domain-dependent although they anticipate it will be useful in other 
domains as well. 

Descottc and Latombe's planner [Descotte and Latombe, 19851 is a process planner for metal cutting that 
uses a constraint satisfaction algorithm. Knowledge is represented by manufacturing rules: the left-hand 
side consists of conditions about the desired part, the available machines, and/or the machining plan. The I 
right-hand side contains pieces of advice representing technological and economical preferences, and so it 
encodes knowledge about the quality of the plans. In contrast with PRODIGY, there is no separation in the 
representation between domain knowledge and search control knowledge. Experts have to assign a weight 
to each piece of advice according to the importance of its satisfaction. These weights arc an extremely 
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condensed representation of a large bodv of knowledge, and human experts have diflicully in expliciling 
them. The initial state of a problem contains global pieces of information such as the quality desired tor the j^i 
part. As far as we know this system has not been applied to other domains. 

ISIS [Fox and Smith, 19841 is a constraint-directed factory scheduling system. The conllicting nature 
of constraints in this domain prompted the introduction of constraint relaxation techniques. The problem 
solving strategy finds a solution that best satisfies the constraints. Some of the constraints are physical 
and must be satisfied, while others can be seen as approximations of a simple profit constraint. Different 
constraints have different importance or priority, that may change from order to order. ISIS provides 
tools with which the user can construct and alter schedules interactively, at different levels of abstraction 
(ISIS automatically fills the other levels). The tools are in charge of maintaining the consistency of the 
schedule and identify decisions that result in poorly satisfied constraints. However they do not facilitate the » 
acquisition of new knowledge. 

SIPE [Wilkins, 19881 is a domain-independent classical planner that reasons with partially ordered 
plans. It incorporates reasoning about resources, and interleaving of planning and execution. SIPE has been 
applied to the scheduling of packaging lines at a brewery [Wilkins, 1989[. The problem is to generate plans 
that meet as many orders as possible, while meeting all the physical constraints, and to minimize the waste | 
from flushing lines. Domain-specific knowledge about search control and the utility of the plans, such as 
why flushing is/is not needed, is encoded in the operators. To lake advantage of existing connections to 
avoid flushing SIPE relies on the preference order given to ihc operators. Therefore there is no separation 
between domain knowledge and control knowledge. According to Wilkins it would be straightforward to 
implement a best-first search using SIPE's context mechanism to find optimal plans, if a good measure of 
plan utility is provided by someone, but that is true also for PRODIGY SIPE offers a domain-independent 
graphical interface to view the partial plans produced as graphs. This interface allows interactive control 
of the search by letting the user watch and, when desired, guide and/or control the planning or replanning 
process. This is useful for debugging and to guide the solution of larger problems that would not be solved 
in a reasonable amount of time. However, as in the case of ISIS, this interaction mechanism does not 
facilitate explicitly the acquisition of new knowledge. 

SteppingStone [Ruby and Kibler, 19901 hcuristically decomposes a problem into simpler subproblcms, 
and then leams to deal with the interactions that arise between the subproblcms. The system allows 
hard-constraints, that must be met and usually outline key aspects of the problem, and soft constraints 
that measure the quality of a solution, and are usually real-valued. The system leams to optimize soft 
constraints as well as solve hard constraints. Problem solving is viewed as moving to states where the goal 
is successively closer to completion. EASe (Ruby and Kibler, 19921 is a generalization of SteppingStone. 
in which additional problem solving knowledge is teamed and stored in the form of episodes (or cases). 
These episodes encode exceptions to the core knowledge. EASe has been applied to design problems in 
which an initial solution obtained by an application system is improved by using the episodes. 

In Section 3 we analyzed the relationship between goal interactions and plan quality. Wilensky's 
planner [Wilensky, 19831 takes advantage of this relationship. He makes an analysis of the different types 
of goal interactions and develops meta-planning mechanisms that deal with them. When a goal overlap, 
or positive goal interaction between a planner's goals, occurs, his planner is able to carry out an action 
that is in the service of a number of goals at once. This might involve executing a single plan that 
simultaneously fulfills several goals, achieving a goal that serves more than one purpose, or employing 
a plan that is worthwhile only when a sufficient number of similar goals is involved. External positive 
goal interactions may also occur in which two or more planners have similar goals (they arc termed goal 
concord). In Wilensky's system then a goal overlap situation provides an opportunity to achieve goals 
more economically than they could be achieved otherwise, and the planner prefers efficient plans over 
inefficient ones. This principle would appear to be the underlying justification for a number of processes 
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incorporated in other planning systems. Forcxaniple, several of NOAH's critics iSaccrdoti, 19771 including 
"use existing objects," "eliminate redundant preconditions," Jid "optimize disjuncts" are motivated by this 
idea and correspond to particular kinds of goal overlap situations. 

Some existing domain-independent planning systems solve multiple-goal problems by developing sep- 
arate plans for the individual goals, combining these plans to form a naive plan for the conjoined goal, and 
then performing optimizations to yield a better combined plan iNau et ai, 1990!. However they restrict the 
types of goal interactions that may happen. In this context, the quality of a plan is only considered as far as 
dealing with and taking as much advantage as possible of goal interactions. A similar mechanism is also 
used by some domain-dependent planners I Hayes, 1990, Nau, 19871. 

Several systems perform plan debugging as their problem solving strategy [Sussman, 1975, Hammond, 
1987, Simmons, 19881. They employ heuristic rules to generate an initial hypothesis and then debugging if 
the hypothesis is incorrect. Therefore they fix planning failures (not execution failures). An example is the 
Generate, Test and Debug paradigm [Simmons, 19881 in which the debugger analyzes causal explanations 
for why a bug arises and fixes it by replacing those assumptions. The debugger is only used if the heuristic 
generator produces an incorrect hypothesis. In contrast our planner generates correct plans and our goal is 
not to fix them but to improve their quality. Our approach does not perform post-facto modification of the 
plans, but analyzes the problem solving process to extract knowledge that will ^uidc the problem solver 
towards better solutions. 

The problem of finding optimal plans has been attacked by decision theorists. However this problem is 
computationally very expensive. Simon introduced the idea of "satisticing" I Simon, 19811 arguing that a 
rational agent does not always have the resources to determine what the optimal action is, and instead should 
attempt only to make good enough, to satisficc. Some current work on planning (for example I Pollack. 
19921) is about the tradeoff between getting around to acting, and spending enough time thinking. Such 
resource-bounded reasoning leads to suboptimal behavior. In our work we do not consider the tradeoff 
between acting and planning time. We acknowledge the computational cost of finding the optimal behavior 
and do not claim that the acquired control knowledge will necessarily guide the planner to optimal plans, but 
that plan quality will improve incrementally over experience as the planner sees new interesting problems 
and interacts with the human expert. The framework presented in [Feldman and Sproull, 19771 incorporates 
decision theory into planning. The utility function of decision theory is used to dec.de which strategy to use 
to achieve a goal, taking into account such factors as reliability, the complexity of the strategy, and the value 
of the goal. It allows also to improve an existing plan prior to its execution to increment its utility. The 
costs and utilities of each plan step has to be expressed as numbers, and these numbers have to be obtained 
in some way. We believe that this limits the range of quality measures that can be expressed. In addition, it 
seems hard to encode the expert knowledge into these values. On the other hand in this framework it is easier 
to deal with conflicts among measures. There is also a body of recent work on methods to choose and/or 
learn optimal policies of action. Some examples are reinforcement learning (e.g. I Lin, 19921), dynamic 
programming, and real-time A* iKorf, 19881. However these methods have been applied to more reactive 
models and not so much to solve complex planning problems. 

The complexity of the problem of finding optimal solutions in the blocks world is analyzed in iGupta 
and Nau, 19911 and iChenoweth, 19911. In both cases optimal solutions are shortest-length plans. IKorf, 
19851 analyzes how the use of macro-operators '• oblem solving affects solution quality, but only from 
the point of view of solution length. In particular in the Eight Puzzle and the 3x3x3 Rubik's Cube domains 
the solution lengths are approximately equal to or less than those of human strategies. 

« 
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7.2    Work on Acquisition of Control Knowledge 

ASK [Gruber, 19891 is probably the piece of work on knowledge acquisition most related to ours. ASK 
is an interactive knowledge acquisition tool that elicits strategic knowledge from people in the form of 
justifications for action choices, and generates strategy rules that operationalize and generalize the expert's 
advice. Gruber distinguishes between control knowledge and strategic knowledge. Control knowledge 
refers to knowledge used to decide what let do next. Strategic knowledge is a subset of control knowledge, 
and it is used by an agent to decide what action to perform next, when actions have consequences external 
to the agent. Search-control knowledge is used to choose internal actions that increase the likelihood of 
reaching a solution state and improve the speed of computation. 

ASK is integrated with the MU architecture, used typically for heuristic classification. MU organizes 
the factual knowledge as a symbolic inference network, where inferences are propagated from evidence 
to hypotheses by local combination functions. ASK acquires strategy rules, inspired by the mcta-rules in 
NEOMYCIN, that map strategic situations to sets of recommended actions. There are three categories 
of strategy rules: focus rules (propose a set of possible actions), filter rules (prune actions that violate 
constraints), and selection rules (prefer a subset of remaining actions). These rules are similar to PRODIGY'S 
select, reject and prefer control rules. ASK's knowledge acquisition process has five steps: 

1. eliciting the user's critique by presenting a list of chosen actions and ask what should have been done 
differently. 

2. credit assignment analysis: check how existing rules matched and determine the requirements for a 
new rule. 

3. eliciting justifications, by displaying features of the knowledge base and allowing the user to choose 
some. New features can be acquired if needed if they are analog to existing features. 

4. generating and generalizing a strategy rule, possibly with user's guidance in the generalization process. 

5. verifying a rule, by presenting the user with a paraphrased description of the ruic and its consequences. 

ASK's success relies on the relevant control features being defined in advance or are analogous to 
existing ones, and on the user understanding of the opportunistic control model that underlies the strategy- 
rule representation. These limitations are somehow shared by our approach. However due to ASK's control 
model it is awkward to acquire goal directed strategies: ASK's planning method is purely reactive with no 
projection (lookahead) and no possibility to undo actions. In addition ASK does not focus on plan quality. 

The system presented in iGolding etai, 1987] acquires general search-control knowledge for Soar from 
a human advisor. In general when Soar has to decide among several courses of action it reaches an impasse 
and generates automatically a subgoal and searches to solve it. Instead this system requests advice from a 
human to solve an impasse. This request can take one of two forms. In the first mode, direct advice, the 
advisor tells Soar which alternative to select. There is no operationalization problem as the system forces 
the expert to name a particular operator. In the second mode the advisor supplies a problem within Soars 
grasp that illustrates what to do. In both cases, after the problem is solved. Soar's learning mechanism, 
chunking, transforms the advice in search-control knowledge. Chunking takes care of the generalization. 
The system may leam from failure if the advice is incorrect. There is no clear distinction between the 
knowledge acquired to reduce search (by avoiding subgoaling to solve an impasse) and the knowledge that 
guides search to a particular solution. Chunking captures the reasons why the advice is correct but it is not 
clear how it may justify why one path is better than other in terms of the quality of the solution. 
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7.3   Other Work on Knowledge Acquisition for PRODIGY 

Section 2.6.1 presented briefly the work done in the context of the PRODIGY architecture to speed up the 
problem solving process. Our work does not focus on speed-up learning, but on improving PRODIGY'S solu- 
tion quality. In addition these systems are fully automated and acquire control knowledge by introspection, 
while we interact with a external source, the human expert. 

Other work in our project has focused on the acquisition of factual, or domain, knowledge. APPREN- 
TICE [Joseph, 19921 performs knowledge acquisition ofdomain knowledge through a graphical interface. It 
provides also tools to view plan execution. Work on leaming by experimentation ICarboncil and Gil, 1990. 
Gil, 1992] focus on the automatic refinement of incomplete operators by performing directed experimenta- 
tion on the environment. However none of this work deals with the problem of acquiring control knowledge 
that improves the quality of PRODIGY'S solutions with experience. 

8 Conclusion 

In this section we present the expected contributions of this work. This is the first piece of work that explores 
and taxonomizes quality metrics for planning systems. The analysis is taken into practice in the form of 
control knowledge that guides the planner's search towards greater quality solutions according to a given 
plan evaluation function. This knowledge can be learned from the system's problem solving experience. 
We believe that both knowledge about plan quality and its automated acquisition frcm problem solving 
experience are key factors for planning systems that move towards more complex and realistic domains. 
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